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Abstract
In the present investigation chromium nanoparticles at different mass fractions were dispersed in ethylene glycol to have
chromium nanofluids. The UV-Vis spectroscopy and transmission electron microscopy results verified that the nanoparticles
(NPs) uniformly distributed in the base liquid. Thermal and optical properties of the prepared nanofluids were investigated
using photoacoustic spectroscopy and minimum deviation methods. Ethylene glycol, ethanol, and distilled water were used
as standard liquids to optimise the experimental setup. The effective thermal effusivity and the refractive index of chromium
nanofluids, in ethylene glycol, were measured and the effects of mass fractions were clarified. The results showed that NPs
significantly enhance the thermal and optical properties of the investigated nanofluids.
Keywords: thermal effusivity, refractive index, chromium, nanofluid, photoacoustic spectroscopy, minimum deviation.

Resumen
En la presente investigación, se dispersan nanopartı́culas de cromo en etilen-glicol a diferentes fracciones másicas para tener
nanofluidos de cromo. Los resultados de la espectroscopı́a UV-Vis y microscopı́a electronica de transmisión verificaron
que las nanopartı́culas (NPs) se distrobuyeron uniformement en el liquid base. Las propiedades térmicas y ópticas de los
nanofluidos preparados se investigaron usando espectroscopı́a fotoacústica y métodos de desviación mı́nima. Se usaron
etilen-gliocl, etanol y agua destilada como lı́quidos estándar para optimizar el diseño experimental. La efusividad térmica
efectiva y el ı́ndice de refracción de los nanofluidos de cromo, en etilen-glicol, fueron medidos y los efectos de las fracciones
másicas fueron clarificados. Los resultados motraron que las NPs aumentan significativamente las propiedades térmicas y
ópticas de los nanofluidos investigados.
Palabras clave: efusividad térmica, ı́ndice de refracción, cromo, nanofluido, espectrocopı́a fotoacústica, desviación mı́nima.

1 Introduction

According to the definition of nanotechnology,
nanoparticles (NPs) size should be less than 100
nm (Pitaksuteepong, 2015). The discovery of novel
materials, phenomena, and processes at the nano-
scales are the evolution of theoretical and experimental
techniques for the evolution of nanosystems and
nanostructures materials (Malmonge et al., 2010).
The use of nanotechnology to develop heat-transfer
materials is a rapidly growing topic of research around
the world. Nanofluids are one of the mentioned
materials that shown promise in the laboratory to

dramatically improve thermal conductivity (Faraji
et al., 2013, Maranville et al., 2006). Suspension
of appropriate nanoparticles in a conventional heat
transfer fluids results in notable enhanced thermal
properties (Jiang et al., 2015, Jiménez-Pérez et al.,
2015). These properties of thermal conductivity,
thermal diffusivity, viscosity, and design parameter for
convective heat transfer are enhanced in comparison to
base fluid properties (Esfe et al., 2015, Mariano et al.,
2015), and these results would be beneficial in saving
equipment costs and increasing performance (Lazarus
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et al., 2015). Based on the photoacoustic theory, the
light energy can be converted to the acoustic wave
that is known as the photoacoustic effect. This method
was developed by Rosencwaig and Gersho to measure
the thermal parameters in liquids and solids (Poulet
et al., 1980, Sundar et al., 2013). Nanofluid can be
prepared by dispersing an appropriate amount of NPs
in a base fluid (Mortazavi et al., 2013). So there
are three most important factors in any nanofluids;
type of NP, base fluid, and NP concentration. Based
on the literature reviews, different properties of the
nanofluids were changed by varying the base fluid
(Hossain et al., 2015, Philip et al., 2012). Metal-
based NPs such as chromium, cadmium, silver and
so on, due to surface plasmon resonance, have
strong absorption in the visible range (Basheer et
al., 2015, Hossain et al., 2015). This property got
much attention from the researchers due to the
unique properties such as high thermal conductivity
(Sadrolhosseini et al., 2013), thermal collector (Leong
et al., 2016), and antibacterial activity (Hansen et
al., 1972, Mollick et al., 2014). Thermal effusivity
is a measure of nanofluid’s ability to exchange
heat with its surroundings. Thermal effusivity of
various metal-based nanofluids was reported in recent
years (Benamrani et al., 2011, Hossain et al., 2015,
Kharazmi et al., 2015). The majority of nanofluid
thermal conductivity information stated in liquid
literature reveals that increasing the NP mass fraction
causes an increase in nanofluid’s conductivity which
announces a linear relationship between the mass
fraction of NPs and nanofluid’s thermal conductivity
(Kang et al., 2006, Li et al., 2006). The thermal
conductivity and thermal effusivity relation is given as
(J.Philip, 2003, Stratakis, 2009).

ε =
√

kρC (1)

where ε is the thermal effusivity, k is the thermal
conductivity, ρ and C are respectively density and the
specific heat capacity. Since conductivity, density and
thermal effusivity are in direct relationships as shown
by Eq.1, it is expected that thermal effusivity increases
by an increase in the mass fraction concentration of
NPs.

Refractive index is another essential quantity
which has various applications in different fields, for
instance, it is used in photonic. Since the thermal
effusivity and refractive index need to be measured for
particular applications of nanofluids (Eastman, 2001).

Water, oil and ethylene glycol were used as heat
transfer liquids, so in this work ethylene glycol was
chosen as base fluid for Cr nanofluids. The thermal and

optical characterizations were carried out to verify the
dependency of thermal effusivity and refractive index
on mass fraction concentration of Cr nanofluid, using
photoacoustic spectroscopy and minimum deviation
method.

2 Theory
Rosencwaig - Gersho theory known as R-G
theory adequately explains the photoacoustic signal
generation in a cell resulting from the absorbed light
energy (Rosencwaig, 1976). By passing the chopped
laser beam through the cell’s window, solid sample
was illuminated and the heat intensity is generated at
depth x of sample. A sample holder was placed on the
photoacoustic (PA) cell and modulated laser beam is
focused on the underside of the sample holder, made
of Al foil that plays as an interface layer between
liquid sample and air in the PA cell. Using Rosencwaig
and Gersho model δp that is the air pressure can be
calculated as it was expressed well in papers published
previously by Delgado-Vaesallo and Marin (Delgado-
Vasallo et al., 1999) and Delgado-Vaesallo et al.
(Delgado-Vasallo et al., 2000).

δp =
βI0γP0

2
√

2kS lαT0(β2 −σ2
Al)

F (2)

where γ is the specific heat ratio, ε, α and k are
respectively thermal effusivity, thermal diffusivity and
conductivity of Al. Io and T0 are the intensity and
temperature, P0 and β are ambient pressure and optical
absorption coefficient of the solid respectively and σAl
is the complex thermal diffusion coefficient. F is the
pressure fluctuation made by the Al foil, then:

F =
2r

σAllAl
(
1 + 2B

σAllAl

) (3)

where r = (1 + i)β/(2a) and a is the parameter which
defines as a = ls

√
π/αs (O Delgado-Vasallo et al.,

1999). The reference signal can be measured when the
sample holder is empty and given as:

|δPAl| =
P1

f P2
(4)

where p1 and p2 are constants, and f is chopping
frequency, while in the presence of a sample the
amplitude of Eq.2, can be expressed as

|δP| =
P1

f P2

(
1 +

P3√
f

+
P2

3
2 f

)1/2 (5)
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where P3 is also constant. Finally, solution thermal
effusivity (εs) can be simply calculated by fitting based
on the below equation.

εs =
P3εAllAl

2

(
π

αAl

)1/2

(6)

3 Materials and methods

3.1 Preparation of samples

For preparing the Cr nanofluid, Cr NPs with average
diameter of 40 nm, from Nano Structured and
Amorphous Materials Inc. (USA), and the Ethylene
Glycol from Aldrich (Germany) as base fluid were
used. To have a uniform nanofluid, the NPs were
suspended in ethylene glycol by sonication technique.
The appropriate amounts of Cr NP were used to
prepare six nanofluids with different mass fraction
concentrations of 0.036, 0.072, 0.090, 0.181, 0.272,
and 0.381 % (w/w). The solution were mixed in
an ultrasonic bath for about 5 hours using Acetyl
Trimethyl Ammonium Bromide (CTAB) as surfactant
to produce uniform and homogeneous nanofluids.

3.2 Experimental setup

Photoacoustic setup: All the PAS setups consist of
three parts: light source, detector, and data analysing
system. A Melles Griot HeNe laser of 632.8 nm at
power of 75mW was used as a light source that
was modulated by Stanford Research Systems optical
chopper SR540; a handmade open photoacoustic cell
(OPC) was used as a detector. A Stanford Research
Systems low-noise preamplifier, SR560, amplified the
very weak output signal from OPC and sent it to a
Stanford Research Systems lock-in amplifier SR530.
The lock-in amplifier and the chopper were controlled
using a Lab VIEW program via a GPIB bus as shown
in Fig.1 (Faraji et al., 2013).

The photoacoustic cell was constructed using
Aluminium rod and a Quartz plate was applied as
the optical window. When the laser illuminated the
nanofluid placed on sample holder with chopped laser
beam, the heat transferred to Al foil and heats the air in
the cell alternatively. The alternation of heat generates
the pressure wave, and the sound was detected using
a sensitive microphone. Pre and lock-in amplifiers
amplified the pressure variations which were displayed
and recorded using a personal computer.
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Minimum deviation method: for measuring refractive index the minimum 180 
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refractive index (n) can be calculated using the following equation: 183 
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presented in Fig.2. All the measurements were carried out at room temperature 189 
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Fig. 1. The experimental set up of open photoacoustic
spectroscopy for liquid samples.
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homogeneous distribution of Cr NPs in ethylene glycol after 6 hours sonication in presence 209 
of CTAB was verified using transmission electron microscopy (TEM). Fig.4 is a typical 210 
TEM image of the 0.090% nanofluid. TEM images reveal that the Cr NPs dispersed 211 
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Fig. 2. The experimental set up for measuring
refractive index of liquids.

Minimum deviation method: for measuring
refractive index the minimum deviation method was
used by application of a He-Ne laser (Melles Griot,
632.8 nm), rotation stage, and a hollow prism. By
measuring the x and y distances, refractive index (n)
can be calculated using the following equation:

n =
sin 1

2 (α+ D)
sin(α/2)

(7)

where D is deviation angle and α which is the angle of
the hollow prism was equal to 60º in present study. The
experimental set up of minimum deviation method is
presented in Fig. 2. All the measurements were carried
out at room temperature about 25ºC.

4 Results and discussion
Fig. 3 shows the optical absorption of six Cr
nanofluids that were characterized using UV-Vis
spectroscopy. This result reveals that the absorption
peaks appeared at 304 nm as it was expected for Cr
NPs (Alrehaily, 2015), and the intensity of absorption
peaks increases by increasing the concentration of
Cr NP in the base fluid (0.036 % to 0.381 %).
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The measurement of refractive index using minimum deviation method was verified by 237 
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Sylvain Delenclos, 2002). After ensuring the accuracy of the data, Cr nanofluids were 252 
thermally characterized using the photoacoustic spectroscopy. Generally, the thermal 253 
effusivity and refractive index of nanofluids are higher than those of the base fluids (Ali et 254 
al., 2010). Fig. 5a and Fig. 5b show the PA intensity signal as function of frequency for two 255 
nanofluids with the Cr mass fractions of 0.036 and 0.090% (w/w), respectively. The solid 256 
curve represents the best fit of the theoretical data. 257 
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Fig. 4. TEM image of 0.090 % (w/w) Cr NP suspended
in ethylene glycol.

The homogeneous distribution of Cr NPs in ethylene
glycol after 6 hours sonication in presence of CTAB
was verified using transmission electron microscopy
(TEM). Fig. 4 is a typical TEM image of the
0.090% nanofluid. TEM images reveal that the Cr NPs
dispersed homogeneously in the base fluid.

The measurement of refractive index using

minimum deviation method was verified by measuring
the refractive indexes of standard liquids. The
refractive index of distilled water, ethanol, and
ethylene glycol were measured and the values are
respectively equal to 1.327, 1.359 and 1.427 which
agreed well with the reported values (Aralaguppi et
al., 1999, Deirmendjian, 1964, Dostalek et al., 2005,
Sasaki et al., 1991). In photoacoustic setup the sample
holder made by Al foil. Regarding to Eq.6 first of
all, it needs to measure the thermal diffusivity of Al
using photoacoustic spectroscopy. The obtained value
was 0.939 cm2/s, this value is in good agreement
with the literature values (Behzad, Mat Yunus, Talib,
Zakaria and Bahrami, 2012, Behzad, Mat Yunus,
Talib, Zakaria, Bahrami, et al., 2012). Using the
measured thermal effusivity of empty sample holder,
the constant parameters (p1, p2) were calculated.
Before measuring the thermal effusivity of nanofluids
and for calibrating the photoacoustic spectroscopy set
up, the thermal effusivity values of Di water, ethanol,
and ethylene glycol, as standard samples, were
measured and the obtained values are 0.163, 0.054 and
0.093 Ws1/2/cm2K respectively. The measured values
for standard samples also are in good agreement with
the reported values (Balderas-Lopez, 2007, Sylvain
Delenclos, 2002). After ensuring the accuracy of the
data, Cr nanofluids were thermally characterized using
the photoacoustic spectroscopy. Generally, the thermal
effusivity and refractive index of nanofluids are higher
than those of the base fluids (Ali et al., 2010). Fig. 5a
and Fig. 5b show the PA intensity signal as function
of frequency for two nanofluids with the Cr mass
fractions of 0.036 and 0.090% (w/w), respectively. The
solid curve represents the best fit of the theoretical
data.
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Fig. 5. Intensity dependent on the frequency variations obtained by photoacoustic spectroscopy for (a) 0.036 % and
(b) 0.090 % (w/w) Cr NPs suspended in EG.
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Fig. 7. Variation of refractive index versus mass
concentration of Cr NPs.

Fig. 6 shows the variation of thermal effusivity
as function of mass fraction of Cr nanofluids. This
figure reveals that thermal effusivity of ethylene glycol
(0%) slightly increase from 0.093 to 0.112 (Ws1/2/cm2

K) by adding of 0.036% Cr NPs. Thermal effusivity
increases almost linearly by adding more NPs up to
0.194 (Ws1/2/cm2 K) for the nanofluid of 0.381% NPs.

The figure shows a considerable increase in
thermal effusivity by increasing the mass fraction. The
results show a 109% increase in thermal effusivity of
ethylene glycol by turn it into Cr nanofluid of 0.381%.

Fig. 7 reveals the refractive index of Cr nanofluid
as function of mass fraction concentration. Refractive
index shows a considerable change by converting
the ethylene glycol to Cr nanofluid. Refractive index
almost linearly, increases from 1.538 to 1.792 by
increasing the mass fraction from 0.036 to 0.381%.

Table. 1. Thermal effusivity and refractive index of Cr
nanofluids.

Mass fraction Thermal effusivity Refractive
of Cr NP (%) (Ws1/2/cm2 K) index

0.000 0.093 1.427
0.036 0.112 1.538
0.072 0.138 1.578
0.090 0.150 1.596
0.181 0.168 1.660
0.272 0.175 1.731
0.381 0.194 1.792

Thermal effusivity and refractive index show
higher values in Cr nanofluids in compare with the
base fluid due to increase of NPs in nanofluids. Table
1 shows the thermal effusivity and refractive index
values for all nanofluids.

Conclusions
Six Cr nanofluids with different mass fraction
concentrations of 0.036, 0.072, 0.090, 0.181, 0.272,
and 0.381% (w/w) were prepared by dispersing the
Cr NPs in ethylene glycol. Thermal effusivity and
refractive index of Cr nanofluids were successfully
measured using photoacoustic spectroscopy and
minimum deviation methods respectively. Thermal
effusivity of nanofluids increased from 0.112 to 0.194
Ws1/2/cm2 K and the refractive index values roughly
linearly increased from 1.538 to 1.792 by increasing
the mass fraction concentration. This research revealed
that tuning the thermal effusivity and refractive index
of Cr nanofluids are possible by varying the mass
fraction concentration of NPs to use as a coolant or
liquid optical devices.
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